Learning Through Advice-Seeking via Transfer

نویسندگان

  • Phillip Odom
  • Raksha Kumaraswamy
  • Kristian Kersting
  • Sriraam Natarajan
چکیده

Experts possess vast knowledge that is typically ignored by standard machine learning methods. This rich, relational knowledge can be utilized to learn more robust models especially in the presence of noisy and incomplete training data. Such experts are often domain but not machine learning experts. Thus, deciding what knowledge to provide is a difficult problem. Our goal is to improve the human-machine interaction by providing the expert with a machine-generated bias that can be refined by the expert as necessary. To this effect, we propose using transfer learning, leveraging knowledge in alternative domains, to guide the expert to give useful advice. This knowledge is captured in the form of first-order logic horn clauses. We demonstrate empirically the value of the transferred knowledge, as well as the contribution of the expert in providing initial knowledge, plus revising and directing the use of the transferred knowledge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretically-Grounded Policy Advice from Multiple Teachers in Reinforcement Learning Settings with Applications to Negative Transfer

Policy advice is a transfer learning method where a student agent is able to learn faster via advice from a teacher. However, both this and other reinforcement learning transfer methods have little theoretical analysis. This paper formally defines a setting where multiple teacher agents can provide advice to a student and introduces an algorithm to leverage both autonomous exploration and teach...

متن کامل

Relational Skill Transfer via Advice Taking

We describe a reinforcement learning system that transfers relational skills from a previously learned source task to a related target task. The system uses inductive logic programming to analyze experience in the source task, and transfers rules about when to take actions. The target-task learner accepts these rules through an advice-taking algorithm. Our system also accepts humanprovided advi...

متن کامل

Probabilistic Logic Learning via Active Advice Seeking

Machine learning approaches that utilize human experts combine domain experience with data to generate novel knowledge. Unfortunately, most methods either provide only a limited form of communication with the human expert and/or are overly reliant on the human expert to specify their knowledge upfront. Thus, the expert is unable to understand what the system could learn without their involvemen...

متن کامل

Transfer Learning via Advice Taking

The goal of transfer learning is to speed up learning in a new task by transferring knowledge from one or more related source tasks. We describe a transfer method in which a reinforcement learner analyzes its experience in the source task and learns rules to use as advice in the target task. The rules, which are learned via inductive logic programming, describe the conditions under which an act...

متن کامل

Skill Acquisition Via Transfer Learning and Advice Taking

We describe a reinforcement learning system that transfers skills from a previously learned source task to a related target task. The system uses inductive logic programming to analyze experience in the source task, and transfers rules for when to take actions. The target task learner accepts these rules through an advice-taking algorithm, which allows learners to benefit from outside guidance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016